
Service-Oriented Architecture for Cloud
Computing

V.E.Unnamalai, J.R.Thresphine

Department of Computer Science and Engineering,

PRIST University Pondicherry, India.

Abstract----- Cloud computing is a significant advancement in
the delivery of information technology and services. Cloud
computing builds off a foundation of technologies such as grid
computing, which includes clustering, server virtualization
and dynamic provisioning, as well as SOA shared services and
large-scale management automation. The technological
improvement believe that clouds, service grids, and service
oriented architectures having an Outside-In architecture style
are technologies that will be fundamental to successfully
making such corporate transformations.

Keywords--- Cloud Computing, Service-oriented Architecture.

I. INTRODUCTION
Cloud computing has gained a lot of hype in the current
world of Information Technology. Cloud computing is said
to be the next big thing in the computer world after the
internet. While cloud computing is currently a term without
a single consensus meaning in the marketplace, it describes
a broad movement toward the use of wide area networks,
such as the Internet, to enable interaction between IT
service providers of many types and consumers.

II. CLOUD COMPUTING
A Cloud is a type of parallel and distributed system
consisting of a collection of interconnected and virtualized
computers that are dynamically provisioned and presented
as one or more unified computing resources based on
service-level agreements established through negotiation
between the service provider and consumers in [2].
Cloud computing is a model for enabling convenient, on-
demand network access to a shared pool of configurable
computing resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly provisioned
and released with minimal management effort or service
provider interaction.This definition from the National
Institute of Standards1 has gained broad support from the
industry.
The NIST definition of cloud computing describes five
essential characteristics, three service models and four
deployment models

A. Five Essential Characteristics
1) On-demand self service: Users are able to provision,

monitor and manage computing resources as needed
without the help of human administrators

2) Broad network access: Computing services are
delivered over standard networks and heterogeneous
devices

3) Rapid elasticity: IT resources are able to scale out and
in quickly and on an as needed basis

4) Resource pooling: IT resources are shared across
multiple applications and tenants in a non-dedicated
manner

5) Measured service: IT resource utilization is tracked for
each application and tenant, typically public cloud
billing.

B. Three Service Models
1) Software as a Service (SaaS): Applications delivered

as a service to end-users typically through a Web
browser. There are hundreds of SaaS service offerings
available today, ranging from horizontal enterprise
applications to specialized applications for specific
industries, and also consumer applications such as
Web-based email.

2) Platform as a Service (PaaS): An application
development and deployment platform delivered as a
service to developers who use the platform to build,
deploy and manage SaaS applications. A virtualized
and clustered grid computing architecture is often the
basis for PaaS offerings, because grid provides the
necessary elastic scalability and resource pooling.

3) Infrastructure as a Service (IaaS): Computer servers,
storage, and networking hardware delivered as a
service. This infrastructure hardware is often
virtualized, so virtualization, management and
operating system software are also part of IaaS as well.

C. Four Deployment Models
1) Public: Services and resources are reachable to the
public by using the internet. This environment emphasizes
the advantages of rationalization (as a user has the ability to
utilize only the needed services and pay only for their use),
operational simplicity (as the system is organized and
hosted by a third party) and scalability. The main concern
in this type of cloud environment is the security; since this
environment is accessible to the public and user data in one
stage is hosted by a third party.
2) Private: Services and resources are reachable
within a private institute. This environment emphasizes the
advantages of integration, optimization of hardware deals
and scalability. The main concern is the complexity, as this
environment is organized and hosted by internal resources.
Security is not a main issue compared to the public cloud as
the services are reachable only through private and internal
networks.
3) Community: Services and resources of this type
are shared by various institutes with a common aim. It may
be organized by one of the institutes or a third party.

V.E.Unnamalai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 251-255

www.ijcsit.com 251

4) Hybrid: This type combines the methods from the
private and public clouds, where resources can be used
either in a public or a private cloud environment. The
advantages and the concerns are a mixture of the earlier
type.

III. HIGH-LEVEL MARKET-ORIENTED CLOUD

ARCHITECTURE.
The high-level architecture for supporting market-oriented
resource allocation in Data Centers and Clouds[1]. There
are basically four main entities involved are
A. Users/Brokers
Users or brokers acting on their behalf submit service
requests from anywhere in the world to the Data Center and
Cloud to be processed.
B. SLA Resource Allocator
 The SLA Resource Allocator acts as the interface between
the Data Center/Cloud service provider and external
users/brokers. It requires the interaction of the following
mechanisms to support SLA-oriented resource management
are
1) Service Request Examiner and Admission Control:

When a service request is first submitted, the Service
Request Examiner and Admission Control mechanism
interprets the submitted request for QoS requirements
before determining whether to accept or reject the
request. Thus, it ensures that there is no overloading of
resources whereby many service requests cannot be
fulfilled successfully due to limited resources
available. It also needs the latest status information
regarding resource availability (from VM Monitor
mechanism) and workload processing (from Service
Request Monitor mechanism) in order to make
resource allocation decisions effectively. Then, it
assigns requests to VMs and determines resource
entitlements for allocated VMs.Pricing: The Pricing
mechanism decides how service requests are charged.
For instance, requests can be charged based on
submission time (peak/off-peak), pricing rates
(fixed/changing) or availability of resources
(supply/demand).

2) Pricing: serves as a basis for managing the supply and
demand of computing resources within the Data Center
and facilitates in prioritizing resource allocations
effectively.

3) Accounting: The Accounting mechanism maintains the
actual usage of resources by requests so that the final
cost can be computed and charged to the users. In
addition, the maintained historical usage information
can be utilized by the Service Request Examiner and
Admission Control mechanism to improve resource
allocation decisions.VM Monitor: The VM Monitor
mechanism keeps track of the availability of VMs and
their resource entitlements.

4) Dispatcher: The Dispatcher mechanism starts the
execution of accepted service requests on allocated
VMs.

5) Service Request Monitor: The Service Request
Monitor mechanism keeps track of the execution
progress of service requests.

C. VMs
Multiple VMs can be started and stopped dynamically on a
single physical machine to meet accepted service requests,
hence providing maximum flexibility to configure various
partitions of resources on the same physical machine to
different specific requirements of service requests. In
addition, multiple VMs can concurrently run applications
based on different operating system environments on a
single physical machine since every VM is completely
isolated from one another on the same physical machine.

D. Physical Machines
 The Data Center comprises multiple computing servers
that provide resources to meet service demands.
In the case of a Cloud as a commercial offering to enable
crucial business operations of companies, there are critical
QoS parameters to consider in a service request, such as
time, cost, reliability and trust/security. In particular, QoS
requirements cannot be static and need to be dynamically
updated over time due to continuing changes in business
operations and operating environments. In short, there
should be greater importance on customers since they pay
for accessing services in Clouds. In addition, the state-of-
the-art in Cloud computing has no or limited support for
dynamic negotiation of SLAs between participants and
mechanisms for automatic allocation of resources to
multiple competing requests. Recently, we have developed
negotiation mechanisms based on alternate offers protocol
for establishing SLAs [8]. These have high potential for
their adoption in Cloud computing systems built using
VMs.
Commercial offerings of market-oriented Clouds must be
able to:
 support customer-driven service management based on

customer profiles and requested service requirements,
 define computational risk management tactics to

identify, assess, and manage risks involved in the
execution of applications with regards to service
requirements and customer needs,

 incorporate autonomic resource management models
that effectively self-manage changes in service
requirements to satisfy both new service demands and
existing service obligations, and

 Leverage VM technology to dynamically assign
resource shares according to service requirements.



Figure 1. High-level market-oriented Cloud architecture

V.E.Unnamalai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 251-255

www.ijcsit.com 252

IV. SERVICE-ORIENTED ARCHITECTURE
A service-oriented architecture service exposes a clearly
defined activity—like credit card validation—to consuming
business applications that might need to perform that
function (such as an order processing application). At the
core of the service-oriented architecture philosophy is the
modularization of business functions for greater flexibility,
manageability, and reusability.
With thoughtful engineering and an enterprise point of
view, SOA offers positive benefits which are as follow.

A. Language-Neutral Integration
The foundational contemporary Web Services standards
use eXtensible Markup Language, which is focused on the
creation and consumption of delimited text. Regardless of
the development language used, these systems can offer
and invoke services through a common mechanism.
Programming language neutrality is a key differentiator
from past integration approaches.

B. Component reuse
Given current Web Service technology, once an
organization has built a soft ware component and offered it
as a service, the rest of the organization can then utilize that
service. With proper service governance, emphasizing
topics such as service provider trust, service security, and
reliability, Web Services offer the potential for aiding the
more effective management of an enterprise portfolio,
allowing a capability to be built well once and then shared.
Multiple components can be combined to offer greater
capabilities in what is often termed “orchestration.”

C. Organizational agility
SOA defines building blocks of soft ware capability in
terms of offered services that meet some portion of the
organization’s requirements. These building blocks, once
defined and reliably operated, can be recombined and
integrated rapidly.

D. Leveraging existing systems
 One common use of SOA is to define elements or
functions of existing application systems and make them
available to the enterprise in a standard agreed-upon way,
leveraging the substantial investment already made in
existing applications. The most compelling business case
for SOA is oft en made regarding leveraging this legacy
investment, enabling integration between new and old
systems components.

V. TRANSFORMING AN EXISTING ARCHITECTURE

The fact that an Inside-Out architecture typically is not
service-oriented — even though it might be possible to
access application functionality using Web services —
suggests that just using the wrapper strategy will not yield
the benefits of a full Outside-In architecture
implementation, and compensation for Inside-Out
architecture limits may even be more costly than taking an
alternative approach.
The process of converting an Inside-Out architecture to an
Outside-In one, we consider how a typical Web application
platform could be converted to an Outside-In architecture

in which some Web application accesses all critical
business functionality through a Web services layer, and
Web services are hosted in a cloud, a service grid, or
internally.
From a layered perspective, a Web application usually can
be described by a graphic of a three-tiered architecture like
the Figure 2.
At the top of the graphic we see a user interface layer,
which usually is implemented using some Web server (like
Microsoft’s IIS or Apache’s HTTP Web server) and
scripting languages or servlet-like technologies that they
support.

Figure 2.Existing Architecture

The second layer, the business logic layer, is where all
business logic programmed in Java, C#, Visual Basic, and
php/python/perl/tcl (or pick your favorite programming
language that can be used to code libraries of business
functionality) is put. The data layer is where code that
manipulates basic data structures goes, and this usually is
constructed using object and/or relational database
technologies. All of these layers are deployed on a server
configured with an operating system and network
infrastructure enabling an application user to access Web
application functionality from a browser or rich internet
client application. The blue and red lines illustrate that
business and data logic sometimes are commingled with
code in other layers of the architecture, making it difficult
to modify and manage the application over time (code that
is spread out and copied all over the architecture is hard to
maintain). Ideally, the red and blue lines would not exist at
all in this diagram, so it is here where we start in the
process of converting this Inside-Out architecture to an
Outside-In one.
A. Addressing Architecture Layering and
Partitioning
The first step of transitioning from one architecture style to
another is to correct mistakes relating to layering wherever
possible. This requires code to be cleaned and commented,
refactored, and consolidated so that it is packaged for reuse
and orderly deployment, and so that cross-layer violations
(e.g., database specifics and business logic are removed
from the UI layer, or business logic is removed from the
data layer) are eliminated.

V.E.Unnamalai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 251-255

www.ijcsit.com 253

Assuming layering violations are addressed, it makes sense
then to introduce a service application programming
interface (API) between the User Interface Layer and the
Business Logic Layer as in Figure 3.
The service layer illustrated here is positioned between the
User Interface and lower architecture layers as the only
means of accessing lower level functionality. This means
that the concerns of one architecture layer do not become

Figure 3.building services in the layer

or complicate the at other levels. But while we may have
cleaned up layering architecture violations, we may not
have cleaned up partitioning violations. Partitioning refers
to the “componentizing” or “modularizing” of business
functionality such that a component in one business
functional domain (e.g., order management) accesses
functionality in another such domain (e.g., inventory
management) through a single interface (ideally using the
appropriate service API). Partitioning also may be referred
to as factoring. When transitioning to a new architecture
style, the first stage of partitioning often is implemented at
the Business Logic Layer, resulting in a modified
architecture depicted as Figure 4.

Figure 4.Partition of Business Logic Layer

The next phase of transformation focuses attention on
partitioning functionality in the database. Because it is
possible to transition the architecture in Figure 2 to become
likes one of the depictions below in Figure 5 illustrates a
well-organized platform that might be centrally hosted.

 Figure 5.Well-Organized Layer

Figure 6 illustrates a well organized platform that could be
hosted in a service grid or even many service grids.

 Figure 6. Layers with service grids

Figures 5 and 6 make it simple to see that services and their
supporting business logic and data functionality could be
replaced easily with an alternative service implementation
without negatively impacting other areas of the
architecture, provided that functionality in one service
domain is accessed by another service domain only through
the service interface.

B. Externalizing Policy
The next step toward implementing an Outside-In
architecture is to external both business and infrastructure
policies from any of the functionality provisioning services
illustrated in the figures above. Our use of the word policy
connotes constraints placed upon the business functionality
of a system, harmonized with constraints on the
infrastructure (hardware and software) that provisions that
functionality. Policy extension points provide the means by
which policy constraints are exposed to business and
corresponding infrastructural functionality and incorporated
into their execution. Externalizing policy highlights a
significant distinction between Inside-Out and Outside-In

V.E.Unnamalai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 251-255

www.ijcsit.com 254

architecture styles. To illustrate the problem of scaling
systems where policy is distributed throughout it, consider
the system illustrated in Figure 7.

 Figure 7. Service Architecture Example

Figure 7 illustrates a system where business policy exists in
multiple locations of the architecture as indicated by areas
outlined in red. Scaling this architecture would be
disastrous because policy would be distributed as copies
(or, worst case, as different code bases) over a very
complex deployment environment.

VI. CONCLUSION
Cloud computing is an emerging computing paradigm that
is increasingly popular. Leaders in the industry, such as
Microsoft, Google, and IBM, have provided their initiatives
in promoting cloud computing. However, the public
literature that discusses the research issues in cloud
computing are still inadequate.
Transforming Inside-Out architecture to an Outside-In
architecture can be a lengthy process — it is a function of
existing system complexity, size, and age. The foresight to
recognize the company’s need to create a platform. The
corresponding need to make architecture changes to
support more rapid development and simpler deployment
of new services.

VII. FUTURE ENHANCEMENT
One of the most important challenges ahead is that clouds
will always be compared to local machine in the time of
usage. It’s important for the user to know what he gains of
shifting to the cloud. Obviously using services on local
machines, the user needs more resources but at least he
knows that he has access to his data all the time and he has
the data he owns on his local machine. But who is in charge
of restoring his data if something happens to the cloud and
the fact that the user is not aware of the physical place
which his data is stored makes cloud more unreliable one.

REFERENCES
[1] Kirsten ferguson-Boucher, Aberystwyth University, Walez, “Cloud

Computing a Records and Information Management Perspective”,
IEEE cloud computing, 2012.

[2] Rajkumar Buyya, Chee Shin Yeo, and Srikumar Venugopal,
“Market-Oriented Cloud Computing: Vision, Hype, and Reality for
Delivering IT Services as Computing Utilities”, (DIISR), 2012.

[3] Hosam AlHakami, Hamza Aldabbas, and Tariq Alwada, De
Montfort University,Leicester, United Kingdom, “Comparison
Between Cloud And Grid Computing: Review Paper”, International
Journal on Cloud Computing: Services and Architecture
(IJCCSA),Vol.2, No.4, August 2012.

[4] Abu Sarwar Zamani , Md. Mobin Akhtar and Sultan Ahmad, “
Emerging Cloud Computing Paradigm”, IJCSI International Journal
of Computer Science Issues, Vol. 8, Issue 4, No 2, July 2011.

[5] M.A. Vouk, “Virtualization of Information Technology Resources”,
in Electronic Commerce: A Managerial Perspective 2008, 5th
Edition y Turban, Prentice-Hall Business Publishing.

[6] [5] A. Weiss. Computing in the Clouds. netWorker,11(4):16-25,
Dec. 2007.

[7] Twenty Experts Define Cloud
Computing,http://cloudcomputing.syscon.com/read/612375_p.htm
[18 July 2008].

[8] R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy.
Proceedings of the IEEE, 93(3): 698-714, IEEE Press, USA, March
2005.

[9] R. Buyya, D. Abramson, and S. Venugopal. The Grid Economy.
Proceedings of the IEEE, 93(3): 698-714, IEEE Press, USA, March
2005.

[10] S. Venugopal, X. Chu, and R. Buyya. A Negotiation Mechanism for
Advance Resource Reservation using the Alternate Offers Protocol.
In Proceedings of the 16th International Workshop on Quality of
Service (IWQoS 2008), Twente, The Netherlands, June 2008.

[11] D. Hamilton. 'Cloud computing' seen as next wave for technology
investors. Financial Post, 04 June 2008.
http://www.financialpost.com/money/story.html

[12] Mike Ricciuti, “Stallman: Cloud computing is 'stupidity'”,
http://news.cnet.com/8301-1001_3-10054253-92.html

[13] K. Keahey, I. Foster, T. Freeman, and X. Zhang. Virtual workspaces:
Achieving quality of service and quality of life in the Grid. Scientific
Programming, 13(4):265-275, October 2005.

[14] I. Llorente, OpenNebula Project. http://www.opennebula.org/ [23
July 2008]

[15] Amazon Elastic Compute Cloud (EC2),
http://www.amazon.com/ec2/ [18 July 2008]

AUTHOR PROFILE

Ms.V.E.UNNAMALAI, Received The B.E(Computer hardware and

software Engineering) From Avinashilingam University,
Coimbatore, Tamilnadu, India and Presently Pursuing Final Year
M.TECH CSE, In PRIST University, Puducherry Campus,
Puducherry, India in 2012 and 2014.

Ms.J.R.THRESPHINE, Received The M.Tech In Computer Science And
Engineering. Presently she is a Working Assistant Professor in Computer
Science and Engineering at PRIST University, Puducherry Campus, and
Puducherry, India.

V.E.Unnamalai et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (1) , 2014, 251-255

www.ijcsit.com 255

